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Methodologic Issues in Using 
Land Cover Data to Characterize 
Living Environments of 
Geocoded Addresses
doi:10.1289/ehp.0901863

Estes et al. (2009) presented an interesting 
analysis of the relationship between blood 
pressure levels of individuals in four metro­
politan regions and their living environments. 
Remotely sensed data was used to determine 
urban, suburban, and rural living environments 
as well as day/night land surface temperatures 
(LST). These remotely sensed data sets are 
readily available nationally, increasing the repli­
cability and consistency of the methods.

Estes et al. (2009) characterized living 
environments using the 2001 National Land 
Cover Dataset (NLCD; Homer et al. 2004). 
Detailed land cover classes were reclassified 
into broad categories of urban, suburban, 
and rural, and the original 30-m resolution 
raster data was resampled to a 1-km grid 
using a majority filter to match the resolu­
tion of the LST data. Residential addresses 
were geocoded and their location compared 
to the 1-km grid cell values to establish the 
living environment variables. There are sev­
eral problems that result from this particular 
methodology, which I address below.

First, Estes et al. (2009) geocoded the resi­
dential addresses using SAS/GIS geocoding 
software which employs TIGER data (SAS 
2010) from the U.S. Census Bureau for street 
geocoding. The positional accuracy of TIGER 
data is not very good (e.g., Zandbergen 2008), 
and street geocoding in general is not very 
accurate (Cayo and Talbot 2003; Zandbergen 
2009). The street geocoded location of the 
residence of a particular individual is therefore 
not very likely to fall inside the same 30-m 
grid cell as the true location of the residence. 
For example, the median error of typical street 
geocoding is in the order of 30–60 m for 
urban areas, about double that for suburban 
areas and much larger in rural areas (Cayo 
and Talbot 2003; Zandbergen 2009). This 
is likely to introduce a substantial number of 
misclassifications. Any point-in-raster over­
lay where the positional error of the points is 
of the same order of magnitude as the raster 
resolution is not very reliable, and the degree 
of misclassification will vary with the spatial 
heterogeneity of the land cover data.

Second, the positional errors in street 
geocoding are not random in nature. Typical 
street geocoding employs a standard offset 
from the roads in the placement of the geo­
coded locations. In many areas, however, the 

actual residence is located at much greater 
distances, especially in rural areas. In the 
2001 NLCD land cover data, many rural and 
suburban roads are classified as developed 
open space. This means that geocoded rural 
addresses will typically fall on this land cover 
type, while the actual residence is located on 
an agricultural or vegetated category. This 
adds to the occurrences of misclassifications, 
especially between suburban and rural.

Third, the resampling of the original land 
cover data from 30 m to 1 km using a major­
ity filter has the undesirable effect that small 
clusters of one land cover type that are sur­
rounded by larger areas of other types will 
simply disappear. Estes et al. (2009) clearly 
acknowledged this and compared the classi­
fications resulting from different resolutions; 
when resampling from 30 m to 1 km, only 
63% of all locations were classified the same. 
This effect of resampling will vary between 
study areas. For example, urban development 
in Atlanta, Georgia, is relatively fragmented 
and the resampling results in a substantial 
reduction of the total area (from 2.0% of the 
study area in the original 30-m grid to 0.94% 
in the 1-km grid). A more compact urban 
development pattern such as Chicago, Illinois, 
is more robust to the effect of resampling.

The resampling does overcome some of 
the misclassifications introduced by the errors 
in street geocoding. In effect, the land cover 
type at the exact location of the geocoded 
address is no longer of greatest interest, and 
instead the “majority” land cover of the sur­
rounding area is used. However, the effects 
of street geocoding errors and resampling will 
vary greatly between study areas, reducing the 
robustness of the final classifications of study 
subjects and introducing potential bias.

One approach to overcome some of 
these problems is to use the 2001 impervious 
cover data, which is provided as a comple­
ment to the 2001 NLCD land cover data. 
Imperviousness is classified between 0 and 
100% and corresponds closely to the different 
land cover types, albeit providing more detail. 
The benefit of using impervious cover is that 
during resampling a simple averaging filter 
can be used instead of a majority filter. This 
type of filter produces unbiased results that 
are not dependent on the spatial heterogeneity 
of the landscape or the scale of resampling. 
Similar urban, suburban, and rural categories 
can be identified and will remain more robust 
under various resampling scenarios. 

The availability of moderate to high 
resolution remotely sensed data at national 
and global scales is providing unprecedented 

opportunities to compare health observa­
tions to environmental variables, including 
land cover and climatic factors. When com­
bining data from different sources, great care 
should be taken to ensure the accuracy of the 
input is sufficient to produce reliable results 
given the specific analysis methods employed. 
Street geocding in particular has been under­
estimated as a source of positional error. 
In addition, when resampling methods are 
employed to produce data sets of matching 
resolution, robust methods are needed to avoid 
the unnecessary introduction of noise and bias.
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We appreciate the insightful and informa­
tive letter about the methodology used in 
our article (Estes et  al. 2009). We agree 
with Zandbergen about the methodology 
employed by the SAS/GIS software used 
for geocoding the REGARDS (REasons for 
Geographic and Racial Differences in Stroke)
participants. As one of the REGARDS study 
goals, we plan to re-geocode the participants 
using a more accurate method. However, 
because our article focused on classifying the 
“living environment” (defined as urban, sub­
urban, and rural) and because most people 
do not spend the majority of their time at 
their house or within the raw resolution area 
(30 m × 30 m), the geocoding errors that are 
in the levels of tens of meters become less 
relevant. This is true especially when we resa­
mple to a coarser resolution (1 km vs. 30 m), 
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as we did in our methodology to characterize 
the participants’ living environment. 

With respect to the misclassification that 
may be introduced due to the resolution used 
to classify participants, Zandbergen is correct 
that resampling to different resolutions did 
change the classification of the participants. 
However, the results of the analyses were 
consistent regardless of the resolution of the 
classification, indicating that while this may 
influence the exposure itself, it does not influ­
ence the relationship between the exposure 
and the outcome. 
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What Can Affect AOD–PM2.5 
Association? 
doi:10.1289/ehp.0901732
Although satellite remote sensing has 
advanced significantly in recent years, there 
are inherent weaknesses in the use of this 
technology. The association between satellite-
based aerosol optical depth (AODS) and air 
pollution monitored on the ground can be 
influenced by a number of factors. In their 
article, Paciorek and Liu (2009) highlighted 
the weaknesses of AODS to predict the spa­
tial distribution of fine particulate matter 
≤ 2.5 µm in aerodynamic diameter (PM2.5). It 
is a timely article given the increasing impor­
tance of indirect methods, including satellite 
data, to estimate air quality because of scarce 
and ad hoc spatial–temporal coverage of air 

pollution monitored by federal regulatory 
methods. It is important that the robustness 
of these methods is evaluated, and Paciorek 
and Liu’s article is such an attempt. However, 
they failed to address the role of five major 
factors that can influence the AODS–PM2.5 
association. These factors include decomposi­
tion of AODS by aerosol types, mismatch in 
spatial–temporal resolution, collocation and 
integration of AODS and PM2.5 data, and 
control for spatial–temporal structure in the 
statistical model. Consequently, the weak­
nesses in Paciorek and Liu’s study lead me to 
question their findings. 

The columnar measurement of AODS 
consists of aerosols generated by anthropo­
genic (human) sources (AODSh), such as 
emissions from industries and vehicles, and 
natural sources (AODSn), such as water vapor 
or dust in the air. AODSn that constitutes 
a large fraction of AODS is influenced by 
moving large air masses and observes a strong 
spatial and temporal structure. The concentra­
tion of PM2.5, however, can vary significantly 
within short distances. Therefore, there is a 
significant mismatch in the magnitude and 
extent of spatial and temporal variability of 
AODSn and AODSh; without an adequate 
control for AODSn, it is difficult to develop a 
reliable PM2.5 predictive model using AODS 
(Kumar et al. 2008).

Paciorek and Liu (2009) recognized that 
the spatial–temporal resolutions of AODS 
and PM2.5 they used were different, but 
they did not address how the mismatch in 
the spatial–temporal resolutions of these 
data can influence their association. The spa­
tial resolutions of MISR (multiangle imag­
ing spectroradiometer), MODIS (moderate 
resolution imaging spectroradiometer), and 
GEOS (geostationary operational environ­
mental satellite) AOD were 17.6 km, 10 km, 
and 4 km, respectively, and PM2.5 data were 
point measurements aggregated across 24 hr. 
A recent study suggests the strength of the 
AODS–PM2.5 association diminishes with 
the increase in time interval used for their 
aggregation (Kumar et al. 2007). It would 
have been useful for Paciorek and Liu (2009) 
to document the implications of the spatial–
temporal resolutions and aggregation of AOD 
and PM2.5 (data they used) on their findings.

AODS retrieval and PM2.5 are not avail­
able on the same days: AODS retrieval is not 
possible on cloudy days, and PM2.5 data are 
recorded every third or sixth day. It seems 
that Paciorek and Liu (2009) averaged 
all AODS at 4-km pixel (i.e., 16 km2 area; 
monthly and yearly) and all PM2.5 (in the 
pixels where a monitoring station was situ­
ated). This could have resulted in a weak asso­
ciation between AODS and PM2.5, because 
there were systematic temporal gaps in both 
AODS and PM2.5 data sets. A reasonable 

approach to address this problem is to aggre­
gate AODS-PM2.5 data for those days only 
when both AODS and PM2.5 are available. 

Paciorek and Liu’s method for aggregating 
17.6-km and 10-km AODS to a 4-km pixel 
seems problematic. First, a radiative transfer 
model is used to retrieve AODS (Remer et al. 
2006) which removes pixels with the upper 
50% and lower 20% of the reflectance values. 
This removal can be systematic. For example, 
pixels with high reflectivity (such as buildings 
and roads) are more likely to be removed than 
the vegetated pixels (i.e., pixels under vegetation 
canopy). Thus, the centroid of a 10-km AODS 
pixel may not represent the AODS value for 
the entire 10-km area. Second, AODS regis­
ters a strong spatial–temporal autocorrelation. 
Thus, time–space kriging that utilizes large 
number of data points is appropriate for AODS 
aggregation rather than a single AODS value to 
avoid an area specific bias.

The robustness of AODS retrieval is 
evaluated by its comparison with the AOD 
recorded by sunphotometers at AERONET 
sites (AODA) (NASA 2007). The spatial reso­
lution at which AODS is retrieved and the 
spatial–temporal intervals within which these 
data are aggregated may directly influence its 
comparison with the AODA . This, in turn, 
can influence the association between AODS 
and PM2.5. Recent literature suggests that 
1-km and 5-km AODS observe a significantly 
better association with PM2.5 monitored on 
the ground than the 10-km AODS (Kumar 
et al. 2007; Li et al. 2005). Therefore, the 
optimal spatial resolution of AODS retrieval 
and the optimal spatial and temporal inter­
vals for aggregating these data are critically 
important for developing time–space resolved 
estimates of air quality with the aid of AODS.

Because meteorologic conditions are 
largely influenced by the prevailing air masses 
and do not vary significantly within thou­
sands of miles for a short period of time, the 
AODSn component of AODS is likely to have 
a strong spatial–temporal structure. PM2.5 that 
constitutes particulate mass associated with 
anthropogenic factors, however, varies signifi­
cantly within short distances from emission 
sources. Therefore, to develop a PM2.5 predic­
tive model it is important that only AODSh is 
used instead of AODSn. If such data are not 
available, an alternative is to indirectly control 
for AODSn and its associated spatial–tempo­
ral structure. Otherwise the predicted PM2.5 
surface is likely to have an unrealistic spatial 
trend, as reported by Paciorek and Liu (2009), 
as well as unrealistic temporal trends.
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